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Canonical q-deformations of non-compact Lie 
(super-)algebras 
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AbrlracL We propose a procedure for qdeformationr of the real forms S of mmplex 
Lie (super-)algebras associated \kith (generaliied) Cartan matrices Our procedure gives 
different q-deformations for the non-mnjugate Carian subalgebras of S. We give several 
illustrations, e.g.. qdefomed Lorena and conformal (super-)algebras, The qdefomed 
conformal algebra contains as a subalgebra a qdefomed Poincad algebra and 2s Hopf 
subalgebras two mnjugate 11-generator qdefomed Weyl algebras The qdefomed 
Lorentz algebra is a Hopf subalgebra of both Weyl algebras 

1. Introduction 

Non-compact Lie groups and algebras play a very important role in physics-recall, 
e.g., the Lorentz, Poinark, conformal groups. Thus ever since the introduction 
of quantum groups as deformations U,(G) of the universal enveloping algebras of 
complex simple Lie algebras [l, 21, or as matrix quantum groups [3-51, one was always 
asking what would be the deformation of the real forms. In fact, the deformation of 
compact simple Lie algebras is used in the physics literature without much explanation 
assuming implementation of the Weyl unitary trick. In [3] the compact matrix 
quantum groups SU,( n), (for n = 2 first in [SI), SOq(n),  Spq(n) and the maximally 
split real non-compact forms SL,(n,R), SO,(n,n), SO,(n,n+ l), Sp,(n,R) were 
introduced. From our point of view it is not accidental that these cases were obtained 
lirst since the root systems of these real forms coincide (up to multiple of i in the 
compact case) with the root systems of their complexilications (see the description 
of our approach below). Besides the above U,(su(l,lj) was considered in [6], 
U,(su(n, 1)) were introduced in [7]. A quantum Lorentz group was introduced and 
studied in [SI and a sevendimensional quantum Lorentz algebra was introduced in 

Thus there is still no universal approach to the qdeformation of real simple 
algebras. Such an approach is proposed in the present paper. Let G be a real 
simple Lie algebra (we shall need to extend the construction to real reductive Lie 
algebras later). We shall use the standard deformation (cf section 22) for the simple 
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1318 V K Dobrev 

components of the complexification G@ of E to obtain deformations U,(G) as a real 
form of U,(g@). Though the procedure is described mostly in terms which are 
known from the undeformed case we stress which steps are necessitated by the q- 
deformation. The lirst basic ingredient of our approach relies on the fact that the real 
forms G of a complex simple Lie algebra Gc are in I-to-I correspondence With the 
Cartan automorphisms 0 of G@. This allows us to study the structure of the real forms 
and to b d  their explicit embeddings as real subalgebras of Gc invariant under 0 and, 
consequently, using the same generators, to find U,(G). ”hiis ingredient is enough 
for the compact case (up to the choice of range of q). The second basic ingredient is 
related to the fact that a real non-compact simple Lie algebra has in general (a b i t e  
number of) non-conjugate Cartan subalgebras [IO]. This is very important since we 
have to choose which conjugacy class of Cartan subalgebras will correspond to the 
unique conjugacy class of Cartan subalgebras of G@ and will be ‘frozen’ under a q- 
deformation (see (4a)). For each such choice we shall get a different qdeformation. 
The third basic ingredient are the Bruhat decompositions G = A $ M €8 h‘$ N 
(direct sum of vector subspaces), where A is a non-compact Abelian subalgebra, 
M (a reductive Lie algebra) is the centralizer of A in G (mod A), and h’, N ,  
respectively, are nilpotent subalgebras forming the positive, negative, respectively, 
root spaces of the root system (G,A). Consistently, the Cartan subalgebras of B 
have the decomposition X = A $ Xm, where Xm is a Cartan subalgebra of M. 
A general property of the deformations U,(G) obtained by our procedure is that 
U,(M), U,(”), U,(?’) are Hopf subalgebras of U,(G), where P = A $ M  $ N ,  
P = A $ M $ h’, are parabolic subalgebras of G. Our approach is easily generalized 
for the real forms of the basic classical Lie superalgebras and of the corresponding 
affine Kac-Moody (super-)algebras. 

These qdeformations are called canonical because they are obtained by a well 
defined procedure presented below. This does not exclude other deformations, 
e.g., multiparameter deformations or deformation by contraction (cf also comments 
in the text). Also, .as in the undeformed case for each real form, there exists 
an antilinear (anti)involution a of U,(G@) which preserves U,(G). Unlike the 
undeformed case it is necessary to consider both involutions and anti-involutions, 
since there are two possibilities for the deformation parameter q, i.e. either IqI = 1 
or q E R. For instance, U,(su(2)) has 141 = 1 when a is an involution and q E iW 
when a is an anti-involution. Further, a is a coalgebra (anti)homomorphism, i.e. 
6 o a = ( a  x a )  o 6, or 6 o a = ( U  x a )  o 6’; . (a (X))  = <(X) VX E U,(G@). 
Then the relations for the antipode are: a o y = y o a if a is an algebra involution 
and a coalgebra homomorphism or if it is an algebra anti-involution and a coalgebra 
antihomomorphism and (a o 7)’ = id otherwise. One approach to the real forms 
would be to try to classify the possible conjugations a directly. Our approach is more 
constructive and the conjugations a are obtained as a byproduct of the procedure 
proposed below (this is pointed out in some examples). 

The organization of the paper is as follows. In section 2 we recall some basic 
facts about real simple Lie algebras and about the qdeformation of complex simple 
Lie algebras. In section 3 we present our approach. In section 4 we present a q- 
deformation of the algebras s o ( p ,  v), in particular, the Lorentz algebra so(3,l). In 
section 5 we present a qdeformation of the conformal algebra su( 2,2) containingdf 
section b a s  a subalgebra a qdeformed Poincare algebra and as Hopf subalgebras 
two conjugate 11-generator qdeformed Weyl algebras. In section 7 we recall the 
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qdeformation of complex Lie superalgebras and present a qdeformation of the 
conformal superalgebra su(2,2/N). 

2. Preliminaries 

21. Real semi-simple Lie algebras [IO] 
Let G be a real semi-simple Lie algebra, 0 be the Cartan involution in G, and 
B = K @ 7J be the Cartan decomposition of G, so that OX = X , X  E K, 
OX' = - X , X  E p; K is the maximal compact subalgebra of G. Let do be the 
maximal subspace of P which is an Abelian subalgebra of Lj; T~ =dim d, is the real 
(or @it) rank of G, 0 < vu 6 e = rank G. 

Let A i  be the root system of the pair (G,d,,), also called (do-) restricted mot 
qstem: 

A\={AEA;IA#O,G; + O }  G : : = { X E G I [ Y , X ] = ( Y ) X , V Y ~ d u } .  (1) 

The elements of A; = A 2  U A: are called (do-) restricted roots; if X E A:, G; are 
called (Au-) mmcted root spaces, dim,G; 2 1. Now we can introduce the subalgebras 
corresponding to the positive (A?) and negative (AE)  restricted roots: 

No= @ G ; = # , @ @  Nu= @ G : = N d @ @ = O # u  (2) 
A € &  >€A;- 

where #,, @, respectively, are the direct sum of G: with dim,B! = 1, dim,G: > 
1, respectively, and analogously for N ,  = efl,. Then we have the (Bruhat) 
decompositions which we shall use for our qdeformations: 

G =No @du @ Mu @No = fl, @@ @do @ M u @  N: @ N$ (3) 
where M u  is the centraker of do in K, i.e. M u  = { X  E K l [ X ,  Y ]  = 0,VY E do}. In 
general Mu is a compact reductive Lie algebra, and we shall write M u  = M i  fB Zr,  
where M i  = [MU,Mu] is the semi-simple part of Mu, and 26" is the centre of M,. 
Note that p: E flu @ do @ Mu,  P,O du @ M u  @No are subalgebras of G, the so 
called minimal parabolic subalgebras of G for that choice of Cartan subalgebra. 

All notions above are easily generalized for the real forms of the basic classical 
Lie superalgebras [ll]. 

22. qdiefonnation in the complex case 
Let 8, be a complex simple Lie algebra; then the qdeformation LJ,(Ljc) of the 
universal enveloping algebras U(G,) is defined [1,2] as the associative algebra over 

with Chevalley generators Xf , Hj, j = 1, , . . , e  = rank Gc and with relations: 

[ H i , X , ]  = o  [ H j , X ; ] = * : a j k X ;  



1320 V K Dobrev 

where (aj,.) = (2(aj,ak)/(aj,aj)) is the Cartan matrix of Gc, the scalar product 
of the roots (., .) is normalized so that 

The elements Hj span the Cartan subalgebra 'H, of Gc, while the elements X: 
generate the subalgebras Q," = f~ g,,, where A = A+ UA- is the root system of 

BEA* 
Gc, A, will denote the set of simple roots of A. One has the standard decomposition 
Gc = G$ f~ 71, @ G;. We recall that the Hj correspond to the simple roots aj of Gc,  
and if p" = Cj may, pv E 2p/(p,p) ,  then to p corresponds H P  = Cj n j H j .  
The elements of 6: which span Gcp, (dim Gcp = l), are denoted by X p .  These 
Cartan-Weyl generators H p ,  X p  [2,12] are normalized so that 

The algebra Uq(Gc) is a Hopf algebra [13] with co-multiplication 6, co-unit e 
(homomorphisms) and antipode y (antihomomorphism) defined on the generators of 
Uq(GJ as fol~ows [1,21 

6 ( H j )  = H j  @ 1 + 1 @ Hj 6 ( X ; )  = X: @ qFf4 + q;HJ/4 @ Xf 

q;'f2x; (7b) 

U4 
e(Hj) = E ( X ; )  = O  y ( H j )  = - H j  

*Pl2X* T i l 2  = - Y(x;) = -9j j 9j 

where ,? E XC corresponds to p = $ ZOEA+ a, ,? = 1 ZOEA+ H,. The action of 6, 
E ,  y on the Cartan-Weyl generators H p ,  X p  is obtained easily from (6) since H p  
(see above) and X p  (cf [2,12] and, e.g. formulae (22), (25)) are given algebraically 
in terms of the Chevalley generators. (Note that if a f! A, the coalgebra operations 
6, y look more complicated than (7).) 

3. qdeformation of the real forms 

The exposition of our procedure is organized as follows. We I ix a real simple Lie 
algebra G and its most non-compact Cartan subalgebra 71,; then we present the 
procedure since it is most simple in this case (section 3.1). Then we point out 
the modifications necessary in order to consider Cartan subalgebras 71 of G which 
are nonanjugate to 'H, (section 3.2). Until this moment we consider only the so 
called minimal parabolic subalgebras P, (which are different for non-conjugate Cartan 
subalgebras). Next, for an arbitrary Cartan subalgebra, we extend the procedure for 
arbitrary parabolic subalgebras. FmaUy we note that we need to generalize the whole 
procedure to reductive Lie algebras which is straightfotward (section 3.3). 
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3.1. Real form wilh most non-compact Cartan subalgebra 
Let g be a real semi-simple Lie algebra, and let us use the data given in section 21. 
The fust step in our procedure is the choice of Cartan subalgebra 'H of G. 

2r, where X r b  is 
the Cartan subalgebra of M i .  Then Xu Rr fB A, is a Canan subalgebra of E, the 
most nonsompact one; dim,'H, = dim,XrS+ dim,Zr + r,,. We also choose 'H, 
U, be the Cartan subalgebra of U,@). Let X c  be the complexificttion of 'H,, (e = 
rank 8" = dim,X"); then it is a Cartan subalgebra of the complexifiation G" of E. 

The second step in our procedure is to choose consistently the basis of the rest of 
G and GE, and thus of U,(G). Fix this we use the classiliation of the roots from A 
with respect to Xu. The set A! E {a E = 0) is called the set of rea[ roofs, 
A! {a E Alald, = 0)-the set of imaginnry roots, A! = A\(A! U A!)-the set 
of compler IVO& [lo]. Thus A = AY U Ay U A:. Further, let a E At, let ,C: be the 
complex linear span of H , , X , ,  X- , ,  and let L, = C; n 8. Then dimR& = 3 iff 
the a E A: U Ay [lo]. If a E A! then X, E Pc and C, is non-compact. Since the 
Cartan subalgebra is Xu, then X ,  E Kc and La is compact if a E Ay = A!. The 
algebras L, are given by 

Let 7-g be. the Cartan subalgebra of MU, i.e. XF = R," 

L:,=m{H,,X, ,X- ,}  (sa) 
L, = m{iH,,X,  - X-,,i(X, t X-,)} (@) a E A!t 

where m stands for real linear span. 
Note that there is a 140-1 correspondence between the real roots a E AY and 

the restricted roots X E A i  with dim&; = 1 and naturally this correspondence is 
realized by the restriction: X = aIdo. Thus the elements in (Sa) X $  for a E A! we 
take also as elements of U,(@. These generators obey 

[ X ,  7 X-,I = [H,lqp [H, ,X, , ]  =&Y(H,)X*,  f o r a €  Allf (9) 

and the Hopf algebra structure is given exactly as for a E A,  cf (7) and the text after 
that 

Remark 1. Formulae (84, (9) determine complete& a qdefomation of any maximal& 
qlit real form (or normal real form), when all roots are real, Mu = 0, and Xu = A,. 
In this case the decompmtion (3) is just 

8 = #, @A, @ Nu (10) 

i.e. this is the restriction to R of the standard decomposition E@ = G$ fB 'Ha: @ Gz, 
and hence U,(G) is just the restriction of U,@) to R with p E R. Thus we 
also inherit the property that U,(#, @ A,), Uq(N,  A,) are Hopf subalgebras 
of U,(g), since U,(@ @ X c )  are Hopf subalgebras of U,(@). Note that U 
here IS an antilinear involution and coalgehra homomorphism such that u(Y) = Y 
VY E Uq(gc). For the classical complex Lie algebras these forms are U,(sl(n,R)), 
U,(so(n,n)),U (so(n+l,n)), U,(sp(n,R)), which are dual to the matrix quantum 
groups SL,(n,R\, SO,(n,n), S O q ( n , n +  l), Sp,(n,R), introduced in [3] from a 
different point of view from ours. 
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Further note that the set of the imaginary roots AY may be identified with the 
root system of Mic. Thus the elements in (Sb) give the Hopf algebra U,(Md) by 
the formulae 

(114 

(W 
(1 IC) 

c,+ = (i /Jz)(X, + x-,) 

6(C,)- P 0 

C; = ( l / J z ) ( x ,  - X-,) A, = -' I H ,  

* - c+ @ efLhm/4 + e-fi.=h*/4 

Since Mu = M; $ 2;. is a compact reductive Lie algebra we have to choose 
how to do the deformation in such cases. Our choice is to preserve the, reductive 
structure, ie. writing in more detail MU = e j M ; )  $ ekZrk, where Mi' is simple 
and Zrk is one-dimensional, then we shall have the Hopf algebra U,(M,) = 
B ~ U ~ ( M ~ )  @ @ I ~ U ~ ( Z ; ~ ~ ) ,  where we also have to specify that if Z r k  is spanned 
by I< then Uq(Zrk) is Spanned by K,qfK/4.  

Remark 2. Formulae (Sb), (11) (with h, E R) determine completely a DrinferCr- 
Jimbo qdq%omafion of my conlpacf semi-simple Lie algebra [I] (when all roots of 
A are imaginaly). Here one may take U as an antilinear involution and walgebra 
homomorphism such that u(X,") = - X z ,  V a  E A ,  u ( H )  = - H ,  V H  E U .  Note 
that in this case the qdefonnation inherited from U,(@) is often used in the physics 
literature without the basis change (11). 

Returning to the general situation, so far we have consistently chosen the 
generators of fl; e A, $ MO $ Ni (cf (3)) as linear combinations of the generators 
of U, e Now it remains to choose consistently the generators of @, 
@, respectively, as linear combinations of the generators of the rest of Gc, i.e. of 
$,,a;+G,, fBaEa~-G,, respectively. If a E A!, X = aiAo, then dim,G; > 1. Let 
A, = {a E Alal,, = A}. If a E A!!, then we have X, = Y, + Z,, where Y, E 'P@, 
2, E K?. Now we can see that G(: = ~ { k ,  = Y, + iZ,, V a  E A,}. The actual 
choice of basis in G: is a matter of convenience, (cf the examples below), and is 
related to the choice of u and q, and to the general property that U,(f'$, U,('@) 
are Hopf subalgebras of U,(G). 

3.2 qdefomatiom Wirh other Cartan subalgebras 

For the purposes of qdeformations we also need to consider Cartan subalgebras 
U which are not conjugate to Xu Cartan subalgebras which represent different 
conjugacy classes may be chosen as X = U, fB A, where Uk is compact, A is non- 
compact, d imd  < dimd, if U is non-conjugate to 'Hp The Cartan subalgebras with 
maximal dimension of d are conjugate to U,; also those with a minimal dimension 
of A are conjugate to each other. 

All notions introduced up until now are easily generalized for U = U, $ A  non- 
conjugate to Xu We note the differences and notationwise we drop all zero subscripts 
and superscripts. One difference is that the algebra M is the centralizer of A in G 

c* a E ~t n A,. 
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(mod A) and thus is, in general, a noncompact reductive Lie algebra which has the 
compact X H b  as Cartan subalgebra (besides, in general, other noncompact Cartan 
subalgebras); in particular, if S has a compact Cartan subalgebra then for the choice 
d = 0 one has M = S. For the purposes of the qdeformation we shall use this 
compact Cartan subalgebra, Le. we set 71" = 'Hi. Further, the classification of the 
mots of A with respect to 71 goes as before. The difference is that if a E Ai then 
L, may also be noncompact Thus for a E Ai the root a is called singular, m E A,, 
if L, is noncompact, and a is called compact, a E Ak, if L, is compact. Thus 
A; = A# U Ak. Formulae (86) hold for Ak, while for a E A, we have 

L, = u{iH, , i (X,  - X - , ) , X ,  + X - , }  CY E A: (1%) 

(1%) 

ri, = -iH, (12) s,+ = (I/&)(X@ + x - ~ )  S; = (i/&)(X, - X-,) 

6(S$)= S ~ ~ e H , h , / 4 + e - R . h , / 4 ~ S ~  a €  A i f l A , .  (124  

Furthermore as before the set of the imaginary roots in A may be identified with the 
root system of Ma@. Thus formulae (86), (11) and (12) also give the deformation 
U,(M"). Since the centre of M is compact (it is in the Cartan subalgebra %" 
which is compact) then the deformation Up(2") is given as after (11). Thus the 
Hopf algebra U,(M) is given. Otherwise, the considerations for the factors N, fl 
go as for No, fl,. 

Thus our scheme providcs a different qdefonnation for each conjugaqv class of 
Cartan subalgebras. 

3.3. qdefonnations for arbitray parabolic subalgebras and reductive Lie (super)aigebras 
Until now our data are the nonconjugate Cartan subalgebras 71 = Xi $ A and 
related with th is  Bruhat decompositions: 

S = fl$ A $ M @ N = fi' $ f l z  $ A  $ M N' @fl. (13) 

In this decomposition a special role for the qdeformations is played by the 
subalgebra Po ==- M @ A @ N (or equivalently by its Cartan involution conjugated 
?o = M @ A  @ N). It is called a minimal parabolic subalgebra. A standard parabolic 
subalgebra is any subalgebra P' of B such that Po C P'. The number of standard 
parabolic subalgebras, including Po and 8, is 2', r = dimd. They are all of the form 
P' = M ' $ A ' @ N ' ,  M' 3 M, A ' s  A, N' C N; M' is the centralizer of A' in g 
(mod d'); N' (respectivelyp = ON') is comprised from the negative (respectively 
positive) root spaces of the restricted root system Ak of (G,d'). One also has the 
analogue of (3), (13): 

B = p @ A'@M' $ N'.  (14) 

Note that M' is a non-compact reductive Lie algebra which has a non-compact Cartan 
subalgebra 71'" Z 'Hk$71,, where 71, is non-compact and A Y 71,ed'. This Cartan 
subalgebra 7 P  of M' will be chosen for the purposes of the qdeformation. 
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Thus we need to extend our scheme to noncompact reductive Lie algebras. Let 
6 = G @ 2 = t @ ’$ be a real reductive Lie algebra, where G is the semi-simple part 
of d, 2 is the centre of & e ,@ are the +1, -1 eigenspaces of the Cartan involution 
8; 2 = A‘ @ Z,, is the analogue of A’, 2, = 2 n @. The root system of the pair 
(6,X) coincides with Ah and the subalgebras N’ and N‘ are inherited from 8. The 
decomposition (3) then is 

Q = Jv @ J @&’e” (15) 

where A? = M’d @ i?”, 2” = 2” @ 2 n R .  As in the compact reductive case we 
choose a deformation which preserves the splitting of &, Le. U,(d) = U,(G)@U,(Z), 
and even further into simple Lie subalgebras and onedimensional central subalgebras. 

Remark 3. A general property of the deformations U,(G) obtained by the above 
procedure is that U,(M,,), U,(?,,), U,(P,) are Hopf subalgebras of U,(G). 

The above scheme can be immediately applied in the case when G is a real form 
of a basic classical Lie superalgebra. This is illustrated in section 7. 

4. Examples 

4.1. s o ( p , r )  

Let G = so(p, r ) ,  with p 2 r > 2 or p > r 1 with generators: M A ,  = - M E A ,  
A,  B = 1,. . . , p + r ,  qAB = diag (- ’ .  . - + ’ .  +), (p times minus, r times plus) 
which obey 

MCDl  =i(qBCA‘AD - V A C M E ,  - ’ IBDMAC + q A D A ’ f B C ) .  (16) 

Besides the ‘physical’ generators M A ,  we shall also use the ‘mathematical’ generators 
YAs = -iMA,. One has K S so(p) @ so(r) if r > 2 and X: I: s o ( p )  if r = 1. The 
generators of X: are M A ,  with 1 < A < B < p and p + 1 < A < B < p + r. The 
split rank is equal to r; M ’!so(p-r), i f p - r  > 2 a n d  M = 0 if p - r  =0,1, dim 
N = dim N = r (p  - 1). Furthermore the dimensions of the mots in the root system 
A of so(p + r, e), and in A R  depending on the parity of p f r are given by 

roots p + r  even p + r o d d  

la21 rZ r ( r +  1). 

Note that the algebra so(2n+l, 1) has only one conjugacy class of Cartan subalgehras. 
Thus in these cases our qdeformation is unique. The algebra so(2n,l) has 
two conjugacy classes of Cartan subalgebras and in these cases there are two q- 
deformations which we illustrate below for n = 1. 
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4.2. qdefomzed so(z1) 

Using notation from above A, B = 1,2,0, (- - +); Yi2 is the generator of IC and 
we may choose Ym for the generator of A; M = 0. Thus we can choose either 
Y or yL2 as a generator of 'H and of 'HC. Let Ai = {*a} be the root system of 8= sl(2,C). If 'H@ is generated by Ya (and 'H = Xu = A) then Q is a real root 
and this deformation, denoted ~ ( s o ( 2 ,  I)), is given by formulae (9) and (7) over R. 
If 'Hc is generated by Yiz then Q is a singular imaginary root and the &formation, 
denoted U:(so(2,1)), is given hy formulae (12) with h, E R. 

4.3. qdefomzed Loren& algebra U, (so(3,I)) 

With A , B  = 1,2,3,0, (- - -+), choose b = Mrr for the generator of A and 
H = M,, for the generator of M. From the above table we see that all roots 
are complex (as is also verified by a simple calculation). It is convenient to use the 
generators Mi = -hfz f iM,, E IC@, N* = -M,u F iM, E PC. We recall that 
G@ = so(4, C) E so(3, C) fB so(3, C). The generators of the two commuting so(3, C) 
algebras are X:  , H, and X: , H,, where 

X:  = (1/2)(Mi - iN*) H, = H - ib 

X: = (1/2)(M* + iN*) H ,  = H + iD. (18) 

We use U9(so(4,C)) = Uq(sO(3,C)) @ U9(so(3,C)) given by 

[X,+,X,] = [Ha] [ H a , X 3  = *2X,i n = 1,2 (19) 

and the Hopf algebra structure is given just by (7) replacing Xi with X,. Using this 
we obtain the following U,(so(3, 1)) relations with q = eh E IN: 

[H, Mi] = &Mi 

[b ,  Mi] = f N *  

[ M t , M - ]  =IN- ,Nt]=2[H]coS(bh/2)  

[ H ,  N*] = &Ni 

[b, N*] = FM* 

cosh( Hh/2) sin( b h / 2 )  
[Mi? NTI = f 2  sinh(h,2) 

ri) = Mi @ ~ e ~ ~ / ~ c o s ( b h / 4 )  - N* @eH'/'sin(bh, 1) 

+ e-Hh/4 cos( b h / 4 )  @ Mi + e-Hh/4 sin( Dh /4) @ N* (214 
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4.4. qdeformed so(4,1) and so(3,2) 

4.4.1. The algebras S O ( 4 , l )  and so(3,2) have the same complexification Gc = 
so(S,@). The mot system of so(5,C) is given by A* = {kal,ka2,ka3,fa,}; the 
simple mots are aI,a2, while a3 = a, f a2, a4 = 20, f a2; the products between 
the simple roots are: ( a l , a , )  = 2 = -(al ,a2),  (a2,a2)  = 4. The Cartan-Weyl 
basis for the non-simple roots is given by (cf 1121) 

x3- t - X t X t  I 2  - (al?~2)lzx+x+ 2 1 -  - xtx; 1 - q-'x$x: E [xf,x;],-, (2W 

x; = x;x; - q-(-z)/2x;x; = x;x; - qx;x; = [x;,x;], 
t - x+x+ - q("I,~3)/2xtxt - x:x: - x;x;,x; = x;x; - x;x;. 

(2%) 

x4- I 3  3 1 -  

(22) 

All other commutation relations follow from these definitions. We shall mention only 

[x;,x$] = k(q*l- 1)(x:)2 [x;,x:] = f ( 1 -  q - Z ) ( l -  q*')(X:)2q*ffZ. 

(U) 

4.4.2. J..etG=so(4,1). WithA,B=1,2 ,3 ,4 ,O(- - - -+) ,choose  Y,forthe 
generator of A; M E so(3) with generators Ya6, a , b  = 1,2,4 and we choose U,, 
for the generator of its Cartan subalgebra. The algebra G = so(4,l) has two non- 
conjugate Cartan subalgebras; besides %,, generated by Y,, Y12 we have a compact 
Cartan subalgebra 'HI generated, say, by Y12, Y,. 

In the case of 'H = 71, the generators of G are expressed in terms of those of 
so(5,C) by 

Y , = - H , , Y , , = ~ ( X , + H ~ )  Y , ~ = ( I / & ) ( X ; ~ X ; )  (2% 

Yw = (l/JZ)(x; - x;) 
Y~ = (i/&)(X; - x:) Y, = ( l / f i ) ( X ;  + x;) 

(244 

( Z k )  

(244 

Y13 = (1/2)(x; + + x,' + x;) Yz, = (i/z)(X; - X$ - X: + X;) 

= (1/2)(x; - x; + x4+ - x;) Y, = (i/z)(x; + .y$ - x: + x;). 

Now we can give all commutaion relations and Hopf algebra operations for YaB as 
generators of qdeformed so(4,I) as inherited from U,(so(S,C)). The deformation 
obtained in this way is denoted by ql. 

In the case of the Cartan subalgebra 'HI we have: Y, = iH,, Y12 = -i( HI f H 2 ) .  
For the lack of space we omit the other generators. The deformation obtained in this 
way we denote by Vil. 



Canonical qdefomarions of non-compact Lie (super-)algebras 1327 

4.4.3. Let g = so(3,2). With A, B = 1,2,3,4,0 (- - - + +), choose Y, and Yw 
as generators of 71, = A. The algebra G = so(3,2) has three non-conjugate Canan 
subalgebras besides 71" we have X1 generated, say, by YI2, Yw and 'H2 generated, say, 
by U,, , V,. Thus 71, , a = 0, 1 ,2, is a Cartan subalgebra with a compact generators. 

we 
have Y,, = 4 H 1 ,  Yw = H ,  + H,; for X 2  one uses M,,  = HI, M ,  = HI t H,. 
(The last deformation was used in [14].) We shall denote the deformation using the 
Cartan subalgebra 7ia by U;,. 

For the Cartan subalgebra 71, we identify Yw = HI, Ya, = H I  + H,; for 

5. qdeformed conformal algebra Uq(su(2,2)) 

The mt system of the complexification sI(4,C) of su(2,2) is given by A* = {fal, 
fa2,fa3,falt, fa,,-+al,); thesimple roots are al ,a2,a3,  while cr12 = aI+a2 ,  
aa3 = a2 + a3, a13 = a1 + a, + a3; all roots are of length 2 and the non-zero 
products between the simple roots are: (a,, a2) = (a,, a,) = -1. The Cartan-Weyl 
basis for the non-simple roots is given by (cf [Z, 151) 

(254 x;k = 2cqT 114 ( q  1 / 4 ~ f x f  I k - q - ' / 4 x : x ; )  

x:, = *qT 114 ( q  114 x ,  * x B - q - 1 / 4 x ; x : )  + = f q T q q 1 / 4 X : , X :  -q - ' /4x :x : z ) .  

(jk) = (12),(23) 

(256) 

All other commutation relations follow from these definitions. Besides those in (6) 
we have (X,$ = X ? )  

[ x : , x ~ b l  = -qH*'2Xz+1b [ x ~ , x ~ , $ l  = xib-lq- H b / 2  l < a < b < 3  

(264 

[X,- ,X,+,]  = x;t,,q-H./2 [x;,  X,f , ]  = -qHb/2x+ ab-I I < a  < b < 3  

Let g = su(2,2) z so(4,2). It has three non-conjugate classes of Canan 
subalgebras represented, say, by 'Ha, a = 0,1,2 with a non-compact generators. 
Thus, according to our procedure, it has five different deformations-three in the 
case of 'H2 (since there are three non-trivial parabolic subalgebras) and one each 
for the other two choices of Canan subalgebras. We shall work with the most non- 
compact Canan subalgebra 71 = 71" = 'H2 and with the maximal parabolic subalgebra. 
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Using the notation from section 4.1. with A, B = 1,2,3,5,6,0 (----++),choose 
Y, and YS6 as generators of A and Y,z for the generator of M .  Since su(2,2) is the 
conformal algebra of four-dimensional Minkowski spacetime we would like to deform 
it consistently with the subalgebra structure relevant for the physical applications. 
These subalgebras are the Lorentz subalgebra M’ E so(3,I) generated by Ypv, 
p, U = 1,2,3,0, the subalgebra of aanslafions generated by P, = YWs + YW6; the 
subalgebra Ni of special conformal ranqormationr generated by K, = Yg5 - Yp6, the 
dilutalionr subalgebra A‘ generated by D = U,. The commutation relations besides 
those for the Lorentz subalgebra are 

[D,Y,,] = 0 [D, PPI = P, [D,K,] = -Kp (274 

[Y,“? P A 1  = V”APP - V,AP” Pp,,K,l = %AKW - V , A K ”  

[Pp,K,,l = 2YW” + 2 V f l V D .  (27b) 

The algebra Pmu = M’ @A’ @ N i  (or equivalently pmx = M’ @A’ @ Mi) is the so 
called maximalparabolic subalgebra of 8, where p, respectively, NI, is the root vector 
space of the restricted mot system A; = {kk A( D) = 1) of (G,d‘), corresponding 
to A, respectively, -A, (cf subsection 3.3). 

For the Lorentz algebra generators we have the following expressions (which are 
inverse to (18)): 

H = -Y, = ( 1 / 2 ) (  H , + H,) 
D = - y  1z - - (I/z)( ’ H, - H ~ )  

M* = - iq3  f iYl, = X: + X: 
* (28) 

N* = -iY, i iy, = i(X: - X, ). 

For the dilatations, translations and special conformal transformations we have 

D = ( I ” +  H3) + Hz (29) 

Pu = i(X& + x:) 
f‘,=x&-x& p3=i(X:-X&) (30) 

IC2 = X;; - X, IC3 = i(X; - X i ) .  (31) 

PI = i(X& + X & )  

li0 = - i ( X i  + X ; )  K, = i(X, + X;) 

Now we can derive the relations in U,(su(2,2)):  
(i) According to our general scheme the deformed Lorene subalgebra is a Hopf 

(ii) The commutation relations of the generators H, D. D of the Cartan 

(iu) The deformation of the translations and special conformal transformations 

subalgebra; its deformation is described by formulae (20) and p1). 

subalgebra X = Xu are not deformed. 

subalgebras is given by 

Pa( Pl f iP2) = qTL/’(  PI i iP2)P, a = 0.3 

[P,,P,]=o [P ,+iPz ,P , - iPz]=X(P~-~~)  02) 

[ IC,, 1c3] = o (33) 

K,( K, ;t iK,) = q*‘/’( K, i iICz)Ka n = 0,3 
[ K ,  + iK2, IC, - ilc,] = A(  I<: - IC:) 
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(iv) The commutation relations of M* with P, are given by 

M + ( P ,  - ip2) - q-'/2(Pl - ipz)M+ = P,, - p3 

M + ( P ,  + iPz) - q'l2(Pl -I- ipz)M+ = q1/2(Pu - p3) 

(34) M + (  Po - P3) - -( Pu - P3)hf+ = -(Pa - P3)N+ 

M + ( P , +  p3) - -(P,+ P,)M+ = T ( ~ , +  P ~ ) N +  + (PI +iP2)  - q1l2(P, -iPz) 

PI iX 
2 2 

PI iX 
2 

[ M - ,  pl - ip2] = -q( i f i+H)/Z (Pu + P3) 

[ M - ,  P, + ip21 = (pa + P3)q(ifi-H)/Z (354 

[ M - ,  P, - p31 = ( P ,  - i p 2 ) q ( d - H ) / z  - q ( d + H ) / z ( p l  + IP ) 

[nf-, Pu + P3] = 0. (354  

The commutation relations between M* and K, are obtained from the above by the 
following changes: h.I* H hf?, Nt H - N - ,  H H - H ,  D H D, Pp H q p p K p ,  
q1lz H q-'I2. These follow from the automorphism of Uq(Gc): Xf U X?, 
H k u  -H 3, X,' k -Xf, Hz H - H z ,  q'/' c* qL1/* (then X i  tf - X &  
X,, H - X z ) .  The commutation relations between N and P,, K, are obtained 
from those between M* and P, by the changes M* - iN*, Po tf - P  3, 

PI 3 -iPz and from those between M* and K,, by the changes M* - -iN*, 
IC, H IC,, K, U -iKz. 

(v) For [ P p ,  A'z,] we have 

[P l&iP2 ,Kl* iKz]  = & X q i ( H - D ) / 2 ( M C  & i N t ) ( M - ~ i N - )  

[ P , & i P 2 , K , ~ i K z ]  = 4 [ f i D - D ]  (364 

[Pa f P3, K3 7 KO] = &4[fH - D] 
[Po f Pa, h'3 f KO] = 0 

[PI - ip,, - KO] = 2 ( ~ +  - iN+)q(H-D)/2 

(W [ P l - i P 2 , K , + K 3 ] = 2 ( M - + i N - ) q -  (Dt ib ) / t  

[P, + iPzr K, - K,,] = - Z ~ ( D - H ) / ~ ( M +  + iN+)  

[PI + iP,, If, + K3] = -2q(D-iD)/2(M- - iN-)  ( 3 W  

and four more relations which are obtained from (36c,d) by the first set of changes 
described after formulae (35) and by D H -D. 

The comultiplication for the Larentz subalgebra is given by (21). for the dilatation 
generator D E 31 C 31' it is trivial and for the translations and special conformal 
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transformations we have 

6(T') = (374 

(37c) 

6,(T*) = 0, p+ = P,, + P3, T- = K3 - IC,,. Consistently with the general scheme 
(cf remark 3) formulae (37) tell us that the deformed subalgebras of translations and 
special conformal transformations are not Hopf subalgebras of B. 

6. qdeformed F'oincar6 and Weyl algebras 

The Poincar6 algebra is not a semi-simple (or reductive) Lie algebra and our 
procedure is not directly applicable. One may tly to use the fact that it is a 
subalgebra of the conformal algebra. Indeed, there is a qdeformed Poincar6 algebra 
with generators Mi, Ni, H, fi = i b ,  PN, and with commutations relations given 
by (20), (32), (34). (35) and those obtained from the latter two by the changes 
Mi - iN*, Pu H -P3, PI - -iP2 However, from formulae (37) it follows 
that the deformation of the Poincar6 subalgebra of su(2,Z) is not a Hopf subalgebra, 
but the deformation U,($,,) of the 11-generator Weyl subalgebra = Poincar6 and 
dilatations = @,,,=-is a Hopf subalgebra of U,(G). Another Weyl algebra conjugate 
to this is Up(Pm,,) with generators M*,  A'*, If, fi = ib, A-,,, D and with 
commutations relations given by (20), (33), and those obtained from (34), (35) as 
explained in the text thereafter. 

Other deformed Poincar6 algebras may be obtained from the contraction of U;, 
and UF2 discussed in section 4.4. Only for ql and U:, one may expect to obtain a 
deformed Lorentz subalgebra as a Hopf subalgebra after contracting Y4,, - RPg,  
R 4 CO, since Y4r are not Cartan generators. However, if q + 1, this limit is not 
consistent with the commutation relations which are inherited from relations (23). 
The other possibilty is to make contractions which involve Cartan generators. This 
may be a non-compact generator which is possible for q, and UF2, n = 0,1, or a 
compact generator which is possible for U;,, n = 0,1, and U&. (The last case was 
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studied in [14].) The resulting deformed Poincare algebras will have a nonampact 
Hopf subalgebra in the case q2 and in one of the ql cases and a compact Hopf 
subalgebra in the other four cases. 

7. qdeformed conformal superalgebras U,(su(2,2/Nl) 

%I. qdeformed compk  superalgebrm 
Let F, be a complex Lie superalgebra with a symmetrizable Cartan matrix A = ( a j k )  
= AdAS, where As = ( a ; k )  is a symmetric matrix, and Ad = diag ( d i , .  . . ,dn), 
dj > 0. Then the qdeformation U9(Fc) of the universal enveloping algebras 
U(p,) is defined [12,16] as the associative algebra over C with generators X?, H, ,  
j E J = { 1, . . . ,e) and with relations: 

(i) (4a) with a j k  replaced by ajk and [ , ]  being the supercommutator: [Y, Z] E 
Y Z  - ( - l ) d ~ y d e ~ z Z Y ,  degH, = 6, j E J ,  degX: = 6, j 6 7, degX:,= i, 
j E 7, I c J enumerates the set of odd simple roots, J\T-the set of even simple 
Toots; 

(ii) 

(3% (ad,.Xj k ) n .  J k ( ( x : )  = 0 for j # k,n = ?C 

(iu) [17-211, for every three simple roots, say, aj, such that (a., a .) = 0, 
= 0, ( a j , ~ j + i  + a j - , )  = 0, the following also 3 .I 

( o ~ . * ~ , Q ~ * ~ )  f 0, 
hoids 

[[x:,X:~,l,-,~x:,X:l,~l,~ = 0 (3%) 

where 
if as .  = a ?  = o  

1 3  311 

?Zjk = 2 if a + .  1 3  = 0, ujk  # 0 (39) 
{ l  1 - 2ajk/aj j  if a j j  # 0 

in (3&, b) one uses the deformed supercommutator: 

(ad,. Xi’)( (x:) = [X:, X:],. 5 XiX: 3 - ( -I)degX:degX:gK(n,,ul)/2.~:Xjf. 
(40) 

When I = 0 relations (3%) for IC = 1 are the same as for r;. = -1 and coincide 
with (4). The necessity of the extra relations (iii) was communicated to the author 
in May 1991 independently by M Scheunert [17], V G Kac [18] and D A kites [19]. 
These relations were witten first for U,(sl( M/N;C)) in [I71 (cf also [20]); then for 
U,(osp(M/ZN)) in [ZO]; here they are given as in [21]. 

The Hopf algebra structure is given by formulae (7), however, with p = pu - p,, 
ps = Ceca+., a, A&, (A;)) is the set of even (odd) positive roots. 

Let 9, = gc = s l ( M / N ; C ) ,  e = M + N .  We choose a Cartan matrix with 
elements: a j j  = a l j  = 2(1- b j Y ) ,  ajj,.i = aJj*,  = -1 except for nMh,+l = 1, all 
other elements are zero; d j  = 1 , ~  < M ,  d j  = -1,j > M. Consistently the products 
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between the simple roots are: ( a j , a j )  = 2,0,-2 for j < M , j  = O , ( j  > M )  
(a j ,a j t l )  = - 1 , l  for j < M ( j  > M) respectively, all other products are zero. 
The root system is given by 

A* = { * a j k  = * ( a j + ( Y j + I f . . . + a k )  11 < j < k 4 e, a j j + l  = a i } .  

The roots &ajk with 1 < j < M , M  < IC < e are odd, the rest are even. The 
Cartan-Weyl generators corresponding to non-simple roots are defined inductively in 
analogy to (25) (see also 1121): 

x;,, x;. 
Note that SI( M / M ;  C) is a reductive Lie superalgebra with its centre generated by 
ZM 3 HI - H Z M -  I t 2( H2 - HZM-2) t , . . + ( M - 1)( H M -  1 - N,+ I 1 t M H,. 

Z2. Uq(su(&2/N)) 

The Lie superalgebra Gs su(2,2/N) 1111 is a real non-compact form of 
8" = sl(4/N;C) with Cartan decomposition and splitting into even and odd 
parts: Gs = K s  + P s  = G& t G& such that G& E su(2,2) @ u(1) $ su(N), 
ICS,)r~(z)$~(z)$su(N),dim~P~~ =&dim&)= dimRP6) =4N.  

The parabolic subalgebras of Gs are determined by the parabolic subalgebras 
of the non-compact subalgebra su(2,Z) of the even part G&. As for su(2,Z) in the 
present paper we consider only qdeformations of G which are consistent with the 
maximal parabolic subalgebra P,$x = M S  @ A S  $ N S ,  where 

AS = d& = IS{ D} G A' M S  = M &  2: M' @ U( 1) ti, SU( N )  

M' S SO(3,l) (4% 

N s = G ; $ G l  G; = G-A, X,(D) = 1/2 A, = 2x, 

dimQ; = 4N ,Vs (0) - - 8- 2 Y N' (426) 

Kis = G;,G; E G~~ = eQ; = G; 2: R ( 4 V  

where the primed objects are su(7J) subalgebras. The Cartan subalgebra lis c G& 
is chosen as follows 

7P = 7ifB u(1) $71, (43) 
where li is the Cartan subalgebra of su(2,2), 71, is the Cartan subalgebra of su( N). 

We express the generators of U,(Gs) in terms of those of Uq(Gc). For 
U,(su(Z,2)) we use formulae (28)-(31), and for U,(su(N)) formulae (11). For 
the latter we note that {&ajk] 5 < j < k < N + 3) form the root system of su(N). 
For the generator of the u(1) subalgebra in G&, M &  and lis we have 

4 N t 3  

k = l  k=5 
e ,  = k H k  t c ( k -  4 -  N ) H k  (44) 
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Note that e4 coincides with 2, described above. Next we have to express the S N  
generators of G&. Let us denote the generators of fl& = Gf by P&, and of 
N& = Q; by K:k. Then we have 

t 
'rk = x 2 y k + 4 - i x a t 2 3 k t 4  

P,: = ix+ t 
a , k t 4  - Xa+Z,kt4 

a = 1 , 2 , k = l I  ..., N (457) 

(45b) 

Kzk = x&kt4 - Xa,k+4 K, = x&2,k+4 - i x , k t 4  

a = 1,2 ,k  = 1 ,.... N .  

The commutation and Hopf algebra relations of Wq(su(2,2/N)) can be explicitly 
witten now using formulae (2S)-(31), (11), (U), (49, (41), (k), (3S), (7). These 
formulae are omitted here because of the lack of space. 
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Note lldded UI poof. (I). Recently, in pZ] were oblained 16 real forms of U,(so(S, e)) were obtained by 
studying its automorphisms and anti-automorphisms p). The Lorentr algebra proposed in lhe present 
paper as an illustration of our procedure was 61% found in [U] as the quantum p u p  of tiouville 
theoty in the strong mupling regime. (3). Other deformations of SO(3, 1) were VeaIed in [24,25] which 
appeared after the present paper was submitted. 
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